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OBJECT-ORIENTED PARALLEL ALGORITHMS FOR COMPUTING
THREE-DIMENSIONAL ISOPYCNAL FLOW
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SUMMARY

In this paper, we derive an object-oriented parallel algorithm for three-dimensional isopy-

cnal flow simulations. The matrix formulation is central to the algorithm. It enables us to

apply an efficient preconditioned conjugate gradient linear solver for the global system of

equations, and leads naturally to an object-oriented data structure design and parallel im-

plementation. We discuss as well, in less detail, a similar algorithm based on the reduced

system, suitable also for parallel computation. Favorable performances are observed on test

problems.

KEY WORDS: isopycnal flow; preconditioned conjugate gradients; parallel computation;

object-oriented simulation

SHORT TITLE: 3-D ISOPYCNAL FLOW SIMULATION

1. INTRODUCTION

Effective semi-implicit finite difference methods have been developed for the simulation

of shallow water equations in two space dimensions [1] and for stably stratified isopycnal

free surface flow in three space dimensions [2]. These methods find application to such

problems as computing circulation in lakes, estuaries, and coastal seas. As with implicit

methods generally, there is an associated computational challenge—at each time step, a

linear algebraic system needs to be solved. For problems arising in practical applications,

the linear systems can be very large, millions of equations for millions of unknowns, and
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their solution consumes most of the computer time needed for simulating the fluid flow.

Accordingly, parallel computing can be attractive. Our approach is built on exploiting the

sparsity and structure of the finite difference coefficient matrices. It employs a preconditioned

conjugate gradient method, as do approaches of V. Casulli in [1] and [2]. Indeed, it was V.

Casulli’s remark to us of the need for developing conjugate gradient preconditioners to speed

up solution of the linear systems in [2] that led us to the present study.

In Section 2 the three-dimensional isopycnal flow model and its semi-implicit finite differ-

ence discretization are described. In Section 3 we give a matrix formulation of the problem,

and in Section 4 we propose two solution methods, based on similar underlying principles.

The first method is suitable for two-dimensional shallow water flow, or three-dimensional

isopycnal flow with a small number of vertical layers; the second method is appropriate for

three-dimensional isopycnal flow with a large number of vertical layers. We discuss in greater

detail the latter case, as it is computationally the more demanding. In Section 5 we discuss

for this case an object-oriented parallel algorithm and in Section 6 present computational

results on test problems. Conclusions and remarks are given in Section 7.

2. THREE-DIMENSIONAL ISOPYCNAL FREE SURFACE FLOW

2.1. Physical model

The layered isopycnal model, as presented in [2], consists of a finite number of moving

layers of ideal fluid, stacked vertically, each layer having uniform density (Figure 1). The

layers are assumed to be in hydrostatic equilibrium (less dense layers above more dense ones),

and the separation surfaces between layers are assumed to be expressible as single-valued

functions of height. Under this model, the governing equations can be expressed in terms of

layer density ρ rather than vertical z-coordinate, resulting in substantial simplification.
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Figure 1. Isopycnal Configuration

For a system of M layers with densities ρ1 > ρ2 > . . . > ρM > 0, denote the separation

surface between layers k and k + 1 by z = ηk(x, y, t), where z is the vertical coordinate,

x, y the horizontal coordinates, and t the time variable. Let uk(x, y, t) and vk(x, y, t) denote

the velocity components in the x and y directions, respectively, in layer k (these velocity

components are assumed to be independent of z within each layer). Then, the equations for

layer k are [2]

∂uk
∂t

+uk
∂uk
∂x

+vk
∂uk
∂y

= −g ∂
∂x

(
M∑
m=k

ρm − ρm+1

ρ0
ηm

)
+νh

(
∂2uk
∂x2

+
∂2uk
∂y2

)
+
τxk+1/2 − τxk−1/2

ηk − ηk−1
,

(1)

∂vk
∂t

+uk
∂vk
∂x

+vk
∂vk
∂y

= −g ∂
∂y

(
M∑
m=k

ρm − ρm+1

ρ0
ηm

)
+νh

(
∂2vk
∂x2

+
∂2vk
∂y2

)
+
τyk+1/2 − τ

y
k−1/2

ηk − ηk−1
,

(2)

∂ηk
∂t

+
∂

∂x

[
k∑

m=1

(ηm − ηm−1)um

]
+

∂

∂y

[
k∑

m=1

(ηm − ηm−1)vm

]
= 0. (3)

Here τxk+1/2 and τyk+1/2 denote the shear stress components between layers and are taken to

be

τxk+1/2 = 2νVk+1/2

uk+1 − uk
ηk+1 − ηk−1

, τyk+1/2 = 2νVk+1/2

vk+1 − vk
ηk+1 − ηk−1

,

where νV is the vertical eddy viscosity coefficient. The parameter νh denotes the horizon-
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tal eddy viscosity coefficient, and g is the gravitational acceleration. See [2] for details on

boundary conditions and on the various parameters.

2.2. Semi-implicit finite difference scheme

By means of a careful differencing in space and time and judicious selection of which

variables to evaluate implicitly and which explicitly, a discretization of (1)–(3) is derived in

[2] that is stable in time and yields linear systems that are suitable for iterative solution by

the conjugate gradient method. The physical domain in the x-y plane is subdivided into

NxNy rectangular cells of uniform length ∆x and width ∆y in each fluid layer. Each cell

is numbered at its center correspondingly with indices i, j. The discrete uk velocities are

defined at half integer i and integer j; vk are defined at integer i and half integer j. The ηk

are defined at integer i and j. The linear system to be solved for updating variables from

time step n to time step n+ 1 is then

Ani+1/2,jU
n+1
i+1/2,j = Gni+1/2,j − Sni+1/2,jR

(
Hn+1
i+1,j −Hn+1

i,j

)
, (4)

Ani,j+1/2V
n+1
i,j+1/2 = Gni,j+1/2 −

∆x
∆y

Sni,j+1/2R
(
Hn+1
i,j+1 −Hn+1

i,j

)
, (5)

Hn+1
i,j = δni,j −

[(
Sni+1/2,j

)>
Un+1
i+1/2,j −

(
Sni−1/2,j

)>
Un+1
i−1/2,j

]
−∆x

∆y

[(
Sni,j+1/2

)>
V n+1
i,j+1/2 −

(
Sni,j−1/2

)>
V n+1
i,j−1/2

]
. (6)

Here Un+1
i+1/2,j and V n+1

i,j+1/2 denote the vector of unknowns for the M values of uk and vk

at successive fluid layers below the point on the x-y plane, at time step n+ 1; similarly Hn+1
i,j

denotes the vector of the M values of ηk. Specifically,

Un+1
i+1/2,j =


un+1
M

un+1
M−1

un+1
M−2

...
un+1

1


i+1/2,j

, V n+1
i,j+1/2 =


vn+1
M

vn+1
M−1

vn+1
M−2

...
vn+1

1


i,j+1/2

, Hn+1
i,j =


ηn+1
M

ηn+1
M−1

ηn+1
M−2

...
ηn+1

1


i,j

.
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In general, M may have different values at different points (i, j).

Let ∆ηk = ηk − ηk−1 and ∆ρk = ρk − ρk+1. Then the matrices A, S, and R are given

by (indices i, j, and n are suppressed)

A =



∆ηM +
νVM−1/2∆t

∆ηM−1/2
+ γT∆t −ν

V
M−1/2∆t

∆ηM−1/2 0
−ν

V
M−1/2∆t

∆ηM−1/2
∆ηM−1 +

νVM−1/2∆t

∆ηM−1/2
+

νVM−3/2∆t

∆ηM−3/2
−ν

V
M−3/2∆t

∆ηM−3/2

. . . −ν
V
3/2∆t

∆η3/2

0 −ν
V
3/2∆t

∆η3/2
∆η1 +

νV3/2∆t

∆η3/2
+ γB∆t


,

S =
θ∆t
∆x

diag(∆ηM ,∆ηM−1, . . . ,∆η1)


1 0
1 1
. . .
1 1 1 1

 , R =
g

ρ0
diag(∆ρM ,∆ρM−1, . . . ,∆ρ1).

Here θ is an implicitness parameter, ρ0 a reference density, g the acceleration due to gravity,

∆t the time step, and ∆ηk+1/2 = (∆ηk + ∆ηk+1)/2; γT and γB are non-negative coefficients

arising from the boundary conditions. A is a symmetric, tridiagonal, positive-definite M-

matrix, S is non-negative lower triangular, and R is diagonal with positive diagonal elements.

A and S are time and space varying; R does not vary with respect to either. The vectors

Gni+1/2,j , G
n
i,j+1/2, and δni,j contain the explicit terms from discretization of (1)–(3).

The staggered tabular points for U , V , and H in (4)–(6) are illustrated in Figure 2.

Associated with a mesh cell (i, j) are the three unknown vectors at time n + 1, Ui+1/2,j ,

Vi,j+1/2 and Hi,j , each of dimension M . From (4)–(6) one sees that each U or V value

(denoted by triangles in the figure) is determined by its two adjacent H values (denoted

by circles) along the x or y direction, respectively; each H value is determined by its four

surrounding U and V values. All the values are to be updated at each time step.
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Figure 2. Mesh grid showing staggered tabular points for U , V , and H.

By eliminating Un+1
i+1/2,j and V n+1

i,j+1/2 from (4)–(6) and setting En+1
i,j = RHn+1

i,j , one

obtains the reduced equation

[
R−1 + (S>A−1S)ni−1/2,j + (S>A−1S)ni+1/2,j + (

∆x
∆y

)2(S>A−1S)ni,j−1/2

+ (
∆x
∆y

)2(S>A−1S)ni,j+1/2

]
En+1
i,j − (S>A−1S)ni−1/2,jE

n+1
i−1,j − (S>A−1S)ni+1/2,jE

n+1
i+1,j

− (S>A−1S)ni,j−1/2E
n+1
i,j−1 − (S>A−1S)ni,j+1/2E

n+1
i,j+1 = Y ni,j (7)

for the (normalized) interface heights En+1
i,j , where

Y ni,j = δni,j−(S>A−1G)ni−1/2,j+(S>A−1G)ni+1/2,j−
∆x
∆y

(S>A−1G)ni,j−1/2+
∆x
∆y

(S>A−1G)ni,j+1/2.

In the reduced equation, each E = RH value is determined by its four neighbors, two in the

x-direction and two in the y-direction (circular points in Figure 2). This structure is similar

to that of the five-point difference scheme for the two-dimensional Poisson equation, except

that here the values of E are vectors rather than scalars.

The reduced equation forms the basis for the conjugate gradient iterative solution method

used in [2]. Here we shall consider either the original, unreduced form (4)–(6) or the reduced
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form (7) as basis for an iterative method, depending on the number of vertical layers in a

problem.

3. GLOBAL LINEAR SYSTEM

3.1. Model problem

To simplify the ensuing discussion and notation, we consider a model problem that we

shall use as framework for describing the numerical algorithms. In the model problem we

take for all vertical layers the same finite difference grid of Nx × Ny cells on a rectangular

domain and the same value M for each (i, j) point, and we suppose that boundary conditions

are such that there are exactly a total of MNxNy unknown values for each of Un+1
i+1,j , V

n+1
i,j+1,

and Hn+1
i,j , with 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny.

3.2. Matrix formulation

We rewrite (4)–(6) in matrix notation, as the global linear system (8) for the model

problem, with dimension 3MNxNy. As in (7), we use the normalized surface heights En+1
i,j =

RHn+1
i,j :

 ÂU 0 −ŜU
0 ÂV −ŜV

Ŝ>U Ŝ>V R̂−1

(n)  ÛV̂
Ê

(n+1)

=

 ĜUĜV
δ̂

(n)

, (8)

where Û =


U 3

2 ,1

U 5
2 ,1

...
UNx+ 1

2 ,Ny

 , V̂ =


V1, 32
V2, 32

...
VNx,Ny+ 1

2

 , Ê =


E1,1

E2,1

...
ENx,Ny

 , R̂ =


R 0

R
. . .

0 R

 ,

ÂU =


A 3

2 ,1 0
A 5

2 ,1

. . .
0 ANx+ 1

2 ,Ny

 , ÂV =


A1, 32 0

A2, 32

. . .
0 ANx,Ny+ 1

2

 ,
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ŜU =


S 3

2 ,1
−S 3

2 ,1 0
S 5

2 ,1

. . . −SNx− 1
2 ,Ny

0 SNx+ 1
2 ,Ny

 , ŜV =
∆x
∆y


S1, 32 0 −S1, 32 0

S2, 32

. . . −SNx,Ny− 1
2

. . . 0
0 SNx,Ny+ 1

2

 .

The right-hand-side quantities are given correspondingly by

ĜU =


G 3

2 ,1

G 5
2 ,1

...
GNx+ 1

2 ,Ny

 , ĜV =


G1, 32
G2, 32

...
GNx,Ny+ 1

2

 , δ̂ =


δ1,1
δ2,1

...
δNx,Ny

 .

The reduced equation (7) can be written in matrix form as well, as a global linear

equation (of dimension MNxNy) for the unknown Ên+1. Elimination of Ûn+1 and V̂ n+1

from (8) yields

[
R̂−1 + Ŝ>U Â−1

U ŜU + Ŝ>V Â−1
V ŜV

](n)

Ên+1 = Ŷ n, (9),

where Ŷ n =
[
δ̂ − Ŝ>U Â−1

U ĜU − Ŝ>V Â−1
V ĜV

](n)

. For the right hand side of (9), the notation

Ŷ n parallels that in (7): Ŷ n = [Y n1,1 Y n2,1 . . . Y
n
Nx,Ny

]>.

The coefficient matrix of (9) is a symmetric, positive-definite matrix that is Ny×Ny block

tridiagonal with block size Nx×Nx; the diagonal blocks are themselves block tridiagonal with

size M×M blocks, and the off-diagonal blocks are block diagonal, also with size M×M blocks

[2]. As mentioned in Section 2.2, the structure is that of the five-point difference scheme for

the two-dimensional Poisson equation (for the particular i, j ordering used), except that here

the values of En+1
i.j are vectors of length M rather than scalars, and the coefficients are M×M

matrices.

We illustrate the structure of (9) for a model problem with just six mesh cells, Nx = 3,

Ny = 2 and with ∆x = ∆y. This will be helpful in discussing the algorithms in Section 4.
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One obtains
T1,1 B 3

2 ,1
0 B1, 32

0 0
B 3

2 ,1
T2,1 B 5

2 ,1
0 B2, 32

0
0 B 5

2 ,1
T3,1 0 0 B3, 32

B1, 32
0 0 T1,2 B 3

2 ,2
0

0 B2, 32
0 B 3

2 ,2
T2,2 B 5

2 ,2

0 0 B3, 32
0 B 5

2 ,2
T3,2



(n) 
E1,1

E2,1

E3,1

E1,2

E2,2

E3,2



(n+1)

=


Y1,1

Y2,1

Y3,1

Y1,2

Y2,2

Y3,2



(n)

, (10)

where

Ti,j = R−1 + (S>A−1S)i− 1
2 ,j

+ (S>A−1S)i+ 1
2 ,j

+ (S>A−1S)i,j− 1
2

+ (S>A−1S)i,j+ 1
2
,

Bi+ 1
2 ,j

= −(S>A−1S)i+ 1
2 ,j
, Bi,j+ 1

2
= −(S>A−1S)i,j+ 1

2
.

In [2], at each time step the reduced system (9) is formulated from the current solution

Ên and solved for Ên+1 using a conjugate gradient method with diagonal preconditioning.

The elements of Ûn+1 and V̂ n+1 may be obtained from Ên+1 using (4) and (5).

4. SOLUTION ALGORITHMS

4.1. Preconditioned conjugate gradients

The solution algorithms we consider employ the preconditioned conjugate gradient algo-

rithm. However, rather than using the algorithm in its customary form [3, Algorithm 10.3.1],

with recursion of two separate vectors—efficient for storage requirements—we use instead the

three-term recurrence for the solution vector alone [4]. This latter form is better suited to

the matrix structure of the problem for the preconditionings we consider.

Algorithm 1 (Preconditioned Conjugate Gradient Algorithm)

Let Ã be an n×n real symmetric positive-definite matrix, and let b be a real n-vector. To

solve Ãx = b iteratively with n× n preconditioning matrix P̃ (also real symmetric positive-

definite):

(i) Let x(0) be a given vector and define x(−1) arbitrarily.
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(ii) For k = 0, 1, · · ·, until convergence

(a) Solve P̃z(k) = b− Ãx(k).

(b) Compute

αk =
z(k)>P̃z(k)

z(k)>Ãz(k)
,

ω1 = 1, ωk+1 =

(
1− αk

αk−1
· z(k)>P̃z(k)

z(k−1)>P̃z(k−1)
· 1
ωk

)−1

, k ≥ 1.

(c) Compute x(k+1) = x(k−1) + ωk+1(αkz(k) + x(k) − x(k−1)).

We next discuss solution algorithms for our problem for a small and then for a larger

number of vertical layers.

4.2. Small number of vertical layers – red-black ordering

If there are only a few vertical layers, then we address solution of the linear systems in

terms of the reduced equation. However, instead of employing a conjugate gradient method

directly on (9), as in [2], we instead first apply a “red-black ordering” to the mesh values,

to take advantage of the two-dimensional-Poisson-like structure. Doing so gives us two ben-

efits: A particular preconditioning for the conjugate gradient method can be applied to the

reordered system, which can require only about half of the computational work of the lexi-

cographic ordering in (9); also, this preconditioning is well suited for parallel computation.

Figure 3 illustrates a red-black ordering for the tabular mesh values Ei,j . This figure

is essentially Figure 2 with the U and V values removed and with the circles denoting the

tabular points for E alternately shaded and open in a checkerboard pattern. As noted in

Section 2, from (7) one sees that Ei,j (a “black” point) is determined by the four surrounding

(“red”) points, Ei−1,j , Ei+1,j , Ei,j+1 and Ei,j−1. In a similar way, a red point is determined

by its four surrounding black points. Thus one need have the solution only at black points,

say; the values at red points can be determined directly from them. In this way, the E points
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Ei,j

Ei,j-1

Ei,j+1

Ei+1,j-1

Ei+1,j+1
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Figure 3. Mesh grid showing red-black designation of tabular points for E.

are divided into two groups, with the elements of either group independent of others within

the group. The unknown vector in the reduced system (9) can be reordered according to the

two sets of points such that it consists of two sub-vectors, red and black.

Carrying out the reordering for the six-mesh-cell model problem (10) one obtains
T1,1 0 0 B 3

2 ,1
B1, 32

0
0 T3,1 0 B 5

2 ,1
0 B3, 32

0 0 T2,2 B2, 32
B 3

2 ,2
B 5

2 ,2

B 3
2 ,1

B 5
2 ,1

B2, 32
T2,1 0 0

B1, 32
0 B 3

2 ,2
0 T1,2 0

0 B3, 32
B 5

2 ,2
0 0 T3,2



(n) 
E1,1

E3,1

E2,2

E2,1

E1,2

E3,2



(n+1)

=


Y1,1

Y3,1

Y2,2

Y2,1

Y1,2

Y3,2



(n)

. (11)

Eq. (11) has the form [
P1 F
F> P2

] [
x1

x2

]
=
[
b1
b2

]
. (12)

Here P1 =

T1,1 0 0
0 T3,1 0
0 0 T2,2

 , P2 =

T2,1 0 0
0 T1,2 0
0 0 T3,2

 , F =

B 3
2 ,1

B1, 32
0

B 5
2 ,1

0 B3, 32
B2, 32

B 3
2 ,2

B 5
2 ,2

 ,
x1 =

E1,1

E3,1

E2,2

 , x2 =

E2,1

E1,2

E3,2

 , b1 =

Y1,1

Y3,1

Y2,2

 , b2 =

Y1,1

Y3,1

Y2,2

 .
A matrix of the form (12) is said to have a block form of Young’s Property A [5],[6]. Of

importance here is that P1 and P2 are themselves block diagonal with block size M ×M , M

generally being small compared with the dimension MNxNy of the linear system.
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It is shown in [4] that particular choices of preconditioner and initial approximation can

be advantageous in Algorithm 1 for a coefficient matrix of the form (12); see also [7]. We

have:

Lemma

In Algorithm 1, let Ã, x, and b have the form indicated in (12), and let the initial vector

x(0) =
[
x

(0)
1

x
(0)
2

]
be such that P2x

(0)
2 = b2 −F>x(0)

1 . Then for k = 0, 1, · · ·, there holds αk ≡ 1,

z
(k)
1 ≡ 0 if k is odd, and z

(k)
2 ≡ 0 if k is even, where z(k) =

[
z

(k)
1

z
(k)
2

]
.

Proof. See [4], [7].

The properties, that half of the elements of successive z(k) are zero and that one of the

conjugate gradient parameters αk need not be computed, can be exploited to give considerable

computational cost savings for Algorithm 1. Based on the Lemma, we give below a special

form that Algorithm 1 can take for these matrices [4].

Algorithm 2 (Preconditioned Conjugate Gradients for Matrices of the Form (12))

For an equation of the form (12) satisfying the hypotheses of Algorithm 1, and with

preconditioning matrix P̃ =
[

P1 0
0 P2

]
:

(i) Let x(0)
1 be a given vector, and solve P2x

(0)
2 = b2 − F>x(0)

1 for x(0)
2 . Define x(−1) =[

x
(−1)
1

x
(−1)
2

]
arbitrarily.

(ii) Take as initial vector x(0) =
[
x

(0)
1

x
(0)
2

]
, and correspondingly set z(0)

2 = 0.

(iii) For k = 0, 1, · · ·, until convergence

(a) If k is even

Solve P1z
(k)
1 = b1 −P1x

(k)
1 − Fx(k)

2 .

Compute

ω1 = 1, ωk+1 =

1− z
(k)
1

>
P1z

(k)
1

z
(k−1)
2

>
P2z

(k−1)
2

· 1
ωk

−1

, k ≥ 2.
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Compute

x
(k+1)
1 = x

(k−1)
1 + ωk+1(z(k)

1 + x
(k)
1 − x(k−1)

1 ),

x
(k+1)
2 = x

(k−1)
2 + ωk+1(x(k)

2 − x(k−1)
2 ).

(b) If k is odd

Solve P2z
(k)
2 = b2 −P2x

(k)
2 − F>x(k)

1 .

Compute

ωk+1 =

1− z
(k)
2

>
P2z

(k)
2

z
(k−1)
1

>
P1z

(k−1)
1

· 1
ωk

−1

.

Compute

x
(k+1)
1 = x

(k−1)
1 + ωk+1(x(k)

1 − x(k−1)
1 ),

x
(k+1)
2 = x

(k−1)
2 + ωk+1(z(k)

2 + x
(k)
2 − x(k−1)

2 ).

In each iteration of Algorithm 2, matrices are half the size of those in Algorithm 1. As

also there is no need to compute αk, Algorithm 2 reduces the computational work by more

than half compared with an approach to Algorithm 1 that does not take advantage of the

block 2-cyclic matrix structure.

Algorithm 2 not only can significantly reduce the computational work per iteration, but

it also has desirable parallel properties. In Algorithm 2, the preconditioning linear systems

P`z
(k)
` = r

(k)
` , ` = 1, 2 involve only one of the two colored sets of points, while the values at

the other points remain unchanged. Furthermore, as points of the same color are independent

of each other and P1,P2 are block diagonal, all the corresponding localized linear systems in

(7) for our problem can be solved efficiently in parallel. Other computational operations in

Algorithm 2, such as matrix-vector multiplication, vector inner product, and vector update,

can be carried out in parallel in a similar fashion.
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If M is large, a shortcoming in applying the algorithm to (10) or (11) is that the di-

agonal blocks Ti,j are dense matrices of size M ×M . Generating each Ti,j and solving the

corresponding linear system requires O(M3) operations (and memory requirements O(M2)).

Thus the algorithm is attractive primarily if the number of vertical layers in a problem is

small; otherwise, alternatives can be more suitable. We present such an alternative next

based on the unreduced global linear system (8).

4.3. Large number of vertical layers – unreduced global linear system

We return now to the unreduced linear system (8), on which we base an algorithm for

the case of more than just a small number of vertical layers. Although the unreduced system

has dimension 3MNxNy, as opposed to just MNxNy for the reduced system, it has the

computational advantage of all its M ×M sub-matrices being sparse. Operations that were

O(M3) for the reduced system can be done for the unreduced system with only linear increase

with M (memory requirements change also from O(M2) to O(M)).

Specifically, because the diagonal blocks Ai+1/2,j and Ai,j+1/2 of ÂU and ÂV in (8)

are tridiagonal matrices and R−1 is a diagonal matrix, the work of generating and solving

linear systems involving them increases just linearly with M . The blocks of the off-diagonal

matrices ŜU and ŜV are not sparse, but they are triangular matrices of a special form, the

product of a diagonal matrix and a triangular matrix with all nonzero elements unity. Only

the diagonal elements of such matrices need be stored, and calculation of the product of the

matrices with a vector can be carried out in a manner that grows only linearly with M : To

calculate

Sx =


d1 0

d2

. . .
0

dM




1 0
1 1
. . .
1 1 1 1



x1

x2
...
xM

 =


y1

y2
...
yM


set t = x1, y1 = td1, and then for i = 2, · · · ,M calculate t = t+ xi, yi = tdi.
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One sees that the coefficient matrix of the unreduced global linear system (8) is not

symmetric, thus Algorithms 1 and 2 can not be applied to it directly. However, the matrix

is real positive, i. e., it has positive-definite symmetric part ÂU 0 0
0 ÂV 0
0 0 R̂−1

 .
With this symmetric part as preconditioner, a special conjugate gradient algorithm is possible

[8]. As the coefficient matrix of (8) has also a block Property A form with sparse diagonal

blocks, that feature can be incorporated into the algorithm as well. First, we state from [8]:

Algorithm 3 (Preconditioned Conjugate Gradient Algorithm for Certain Nonsymmetric Systems)

Let Ã be a nonsymmetric n × n real matrix with positive-definite symmetric part

(Ã+Ã>)/2, and b a real n-vector. To solve Ãx = b iteratively with preconditioning ma-

trix P̃ = (Ã+Ã>)/2:

(i) Let x(0) be a given vector and define x(−1) arbitrarily.

(ii) For k = 0, 1, · · ·, until convergence

(a) Solve P̃z(k) = b− Ãx(k).

(b) Compute

ω1 = 1, ωk+1 =

(
1 +

z(k)>P̃z(k)

z(k−1)>P̃z(k−1)
· 1
ωk

)−1

, k ≥ 1.

(c) Compute x(k+1) = x(k−1) + ωk+1(z(k) + x(k) − x(k−1)).

Note that, as for Algorithm 2, this algorithm requires computation of only one of the

conjugate gradient parameters, ωk. The algorithm is attractive when (ii a) is sufficiently

simpler to solve than is the original equation, and when also P̃ is “near enough” to Ã to be

a good preconditioner. If Ã were symmetric, then Algorithm 3 would collapse just to solving

the original equation Ãx = b at step k = 0.
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For an equation, such as (8), that has also the structure[
P1 −F
F> P2

] [
x1

x2

]
=
[
b1
b2

]
(13)

with sparse diagonal blocks, we can take advantage of the structure to obtain the following

algorithm, in a manner similar to which Algorithm 2 was obtained from Algorithm 1. For

(8) we have

P1 =
[

ÂU 0
0 ÂV

]
, P2 = R−1, F =

[
ŜU
ŜV

]
,

x1 =
[
Û
V̂

]
, x2 = [ Ê ] , b1 =

[
ĜU
ĜV

]
, b2 = [ δ̂ ] .

Algorithm 4 (Preconditioned Conjugate Gradient Algorithm for Certain Nonsymmetric

Systems of the Form (13))

For an equation of the form (13) satisfying the hypotheses of Algorithm 3, with P1 and

P2 symmetric and preconditioning matrix P̃ =
[

P1 0
0 P2

]
:

(i) Let x(0)
1 be a given vector, and solve P2x

(0)
2 = b2 − F>x(0)

1 for x(0)
2 . Define x(−1) =[

x
(−1)
1

x
(−1)
2

]
arbitrarily.

(ii) Take as initial vector x(0) =
[
x

(0)
1

x
(0)
2

]
, and correspondingly set z(0)

2 = 0.

(iii) For k = 0, 1, · · ·, until convergence

(a) If k is even

Solve P1z
(k)
1 = b1 −P1x

(k)
1 + Fx(k)

2 .

Compute

ω1 = 1, ωk+1 =

1 +
z

(k)
1

>
P1z

(k)
1

z
(k−1)
2

>
P2z

(k−1)
2

· 1
ωk

−1

, k ≥ 2.

Compute

x
(k+1)
1 = x

(k−1)
1 + ωk+1(z(k)

1 + x
(k)
1 − x(k−1)

1 ),

x
(k+1)
2 = x

(k−1)
2 + ωk+1(x(k)

2 − x(k−1)
2 ).
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(b) If k is odd

Solve P2z
(k)
2 = b2 −P2x

(k)
2 − F>x(k)

1 .

Compute

ωk+1 =

1 +
z

(k)
2

>
P2z

(k)
2

z
(k−1)
1

>
P1z

(k−1)
1

· 1
ωk

−1

.

Compute
x

(k+1)
1 = x

(k−1)
1 + ωk+1(x(k)

1 − x(k−1)
1 ),

x
(k+1)
2 = x

(k−1)
2 + ωk+1(z(k)

2 + x
(k)
2 − x(k−1)

2 ).

For our problem (8), the work required for Algorithm 3 or 4 is linear in terms of M , as

all component operations for the matrix blocks are linear in M , as discussed above. We focus

attention in the following section on an object-oriented parallel implementation of Algorithm

4 for solving (8).

5. COMPUTER IMPLEMENTATION

5.1. Parallel processing

Algorithm 2 and Algorithm 4 are well suited for parallel processing. We focus here on

an implementation for the more complex case of Algorithm 4 and the unreduced system.

For the implementation we take vectors Û and V̂ in (8) to correspond to “red points” and

Ê to “black points”. As vector components on points of the same color are independent of

one another and are determined solely by values at points of the other color, each step of

Algorithm 4 can be decomposed into operations on only one set of colored points, while the

other set of points remains unchanged. This property is basic to the parallel implementation.

The implementation can be nontrivial, however, for practical problems. The structure

of the global system may not be as straightforward as is (8) for the model problem, because,

in general, the domain can be irregular with different positions having different numbers of
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vertical layers. As a result, matrices ŜU and ŜV would not, for example, have a simple block

two-diagonal structure with blocks of the same dimension. Explicit generation of the global

linear system could correspondingly be complicated, because of the difficulty in globally

tracing vector element values at the various mesh points and in determining matrix element

connectivities. A robust procedure would be desirable whereby vectors, Û , V̂ , or Ê, could

communicate locally in a simple manner with neighbors of the opposite color, to generate and

to solve independently the corresponding localized linear systems (4), (5), or (6). Object-

oriented programming (OOP) provides such a procedure.

5.2. Object-oriented programming

In OOP languages like C++, a class is a user defined data type that describes a set of ob-

jects with identical characteristics (data elements) and behavior (functionality) [9]. Thinking

in these terms, we abstract two classes naturally, VelocityPoint and EPoint, corresponding

respectively to the red and black points.

Each object of class VelocityPoint represents and solves a localized linear system defined

by either (4) or (5). Its data include variables, such as coefficient matrix elements in the

localized system, and working variables, such as matrix decompositions for Algorithm 4.

Its functionality includes communicating with the two neighboring EPoints and generating

and solving the localized linear system. Figure 4 shows the major components of the class

VelocityPoint for Algorithm 4.

In Figure 4, e1 and e2 denote the two neighboring EPoints for a VelocityPoint (a U -point

or V -point). P denotes the coefficient matrix for the VelocityPoint, i.e., the tridiagonal ma-

trix A in (4) or (5), which is used as preconditioner for solving the localized linear system;

bidiagonal matrix L and diagonal matrix D are, respectively, the lower triangular and di-

agonal factors resulting from the Cholesky decomposition of P . Triangular matrix S is the
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Neighbors e1 e2

Symmetric Tridiagonal P

Cholesky of A: LD

Triangular S

Vectors x2 x1 x0 b z

Data

Functionality

VelocityPoint Generate P and b

Communicate with e1 e2

Matrix Multiply Px

Cholesky of P

Solve Pz=b

Matrix Multiply Sx

Update x2 from x1 x0

Figure 4. Class VelocityPoint

coefficient matrix in (4) or (5) for the two neighboring EPoints for the current VelocityPoint;

S can be stored as a diagonal matrix, as it is a product of a diagonal matrix and a constant

matrix. Vector b is the right hand side of the localized linear system for the VelocityPoint,

i.e., the vector G in (4) or (5). Vectors x0, x1, x2 and z are working vectors, used in the

preconditioned conjugate gradient linear solver in Algorithm 4; x0, x1, x2arise in the three-

term recurrence of the algorithm, and z is the preconditioned residual vector. Vector x in

the Functionality branch is a generic vector to be multiplied by P or S.

In class VelocityPoint, data storage requirements are linear in M . We apply the Cholesky

decomposition at the beginning of the iteration at each time step and use this decomposition

for solving the linear systems in iteration steps of Algorithm 4.

Class EPoint represents and solves localized linear systems defined by (6). As shown in

Figure 5, EPoint is less complicated than is VelocityPoint, as its localized matrix R̂−1 is a

diagonal constant matrix.

In Figure 5, u1 and u2 denote the two neighboring U -points for an EPoint, and v1 and
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Data

Functionality

EPoint

Neighbors u1 u2 v1 v2

Vectors x2 x1 x0 b z

Generate b

Communicate with u1 u2 v1 v2

Matrix Multiply STx

Update x2 from x1 x0

Figure 5. Class EPoint

v2 the two neighboring V -points. Vector b is the right hand side of the localized linear system

for the EPoint, i.e., the vector δ in (6). The other vectors are as described for Figure 4.

In terms of these two classes, VelocityPoint and EPoint, global data structure design

and parallel implementation can be readily accomplished. We need only the three object

sets Û , V̂ , and Ê to express the matrices and vectors appearing in (8) and in Algorithm 4.

Additionally, we need a matrix array (Mesh) for storing information on the geometry and

on the mapping between elements of the object sets and points on the mesh. An element in

object sets Û or V̂ of class VelocityPoint stores the indices of the two neighboring EPoints

and communicates with them by directly indexing into array Ê. Elements in the object set

Ê communicate with their neighboring VelocityPoints in a similar way. Data initialization is

a three-step process: first, the Mesh array obtains the geometry information of the problem;

second, the mesh points are cycled through to identify their characteristics and to allocate

the three vector arrays accordingly, so as to obtain a mapping between mesh points and these

arrays; finally, for each element in the three arrays, the neighboring elements of the other

class are found.

All global operations, such as matrix-vector multiplication and solution of preconditioned

linear systems, can be realized by iterating through elements of the vector arrays and calling

their corresponding functionalities. As elements in the same array are independent of one
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another, they can be assigned to different processors, which can then work simultaneously in

parallel.

5.3. Task assignment and load balancing

In relatively simple problem domains an object takes roughly the same amount of work

as others in the same vector array for performing a particular function. A straightforward

static-task-assignment scheme for load balancing usually works well in such domains. For our

test problem we partition the three vector arrays into essentially equal segments, according to

the number of processors, and each processor is then assigned one segment (i.e., the starting

and ending indices) from each array.

In more complex domains, the amount of work for a certain function can differ sig-

nificantly for different objects in the same array, as objects can have different boundary

conditions or different numbers of vertical layers. For such domains, each element should be

weighted by its computational complexity during the static task assignment, and then some

dynamic load balancing scheme employed.

Figure 6 depicts the two types of problem domains. Figure 6a shows an idealized sim-

plification for our numerical test problem of the complex domain in Figure 6b, the surface

contour of San Francisco/San Pablo Bay. The domain bottom for the test problem, with

depths in the interior varying gradually by about a factor of two or more, is a simplified

version of that of the Bay. Correspondingly, there may be differing numbers of vertical layers

for different elements.

For our test problem, once all processors are assigned a segment from each of the three

arrays, the processors can work on most of the global operations in parallel. Global syn-

chronization (e.g., a barrier or a lock) is required for sequential operations. As an exam-

ple, Algorithm 5 is a (C++)-like parallel implementation for computing the global quantity
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Figure 6. Problem domains: (a) test problem, (b) San Francisco & San Pablo Bays

z
(k)
1

>
P1z

(k)
1 in step (iii a) of Algorithm 4. Parallel implementations for other global opera-

tions in Algorithm 4 are similar. Algorithms like Algorithm 5 are valid for both shared and

distributed memory architectures.

Algorithm 5 (Parallel Implementation for Computing z(k)
1

>
P1z

(k)
1 )

if my ID == 0,
g zPz = 0;

barrier( );

l zPz = 0;
for i = l start u; i <= l end u; i++;

l zPz += U[i].zPz( );
for i = l start v; i <= l end v; i++;

l zPz += V[i].zPz( );

lock( );
g zPz += l zPz;
unlock( );

Note: Global variables start with g ; local variables start with l .
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6. COMPUTATIONAL RESULTS

The domain in Figure 6a was used to study the performance of our algorithm. Although

a task assignment scheme is easier to implement for the test problem than it is for the actual

San Francisco Bay, the geometry is sufficiently complex to justify use of an object-oriented

data structure. The (water) domain is discretized on a 1088×1344 two-dimensional mesh,

and physical parameters are taken to accord with those for San Francisco Bay communicated

to us by V. Casulli. Grid size is ∆x = ∆y = 60 (meters) and water depth in the interior

is generally between about 15 and 40. Boundary conditions are that at the land normal

velocities are zero and at the open boundary the layer interfaces are subject to prescribed

vertical motion. Generally, initial conditions are that the fluid is quiescent and that the

layer interfaces are horizontal and equally spaced; other initial conditions, including random

perturbations to these, were tried for investigating behavior of the algorithm. The behavior

reported below persisted for these changes without significant deviation.

There are three major goals in the design of our algorithm for the unreduced global

system: that it have good convergence rate; that its computational complexity grow linearly

with the number of fluid layers (not cubically as in the case of Algorithm 2 for the reduced

system (9)); and that it have good parallel performance. As discussed in Section 4.3 and as

observed in our numerical experiments, the amount of work for initialization of each localized

linear system is proportional to its number of vertical layers. Additionally, generation of the

global system requires very little synchronization, so that the total computational cost of

initialization at each time step is an order of magnitude less than that of solving the system.

Thus in assessing below the behavior of the algorithm, we can focus only on the solving of

the linear systems, and neglect initialization considerations.
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6.1. Linear solver convergence

As we take the diagonal blocks of the coefficient matrix as preconditioner for Algorithm

4, the degree of block diagonal dominance of the matrix can be important in determining the

convergence rate of the algorithm. In the numerical experiments for (8) we found that the

factor ∆t/∆x in S (see the definition of S following (6)) is the principal quantity on which

the linear solver convergence rate depends. The magnitudes of the off-diagonal blocks in the

global matrix are proportional to this factor.

Figure 7 shows the convergence rate achieved by the linear solver for typical parameter

values. Here the tabular points are the relative residuals ||b−Ax||2/||b||2 at even-numbered

iterations. The rate is found to be quite satisfactory. For example, for 9 fluid layers (and

∆x = 60) the number of unknowns in the global matrix is approximately 1.83 × 106; for

∆t = 10 (secs.) only 36 iterations are required for the solver to decrease the two-norm of

the residual by a factor of about 10−9. On a 20-processor 200 MHz Sun Enterprise 10000

workstation with 10 Gbytes of memory, this requires about 62 seconds for a single processor.

The data for Figure 7 were taken after about a dozen time steps and for the previous time

step’s solution as initial approximation for the conjugate gradient iteration. Essentially the

same qualitative convergence results could be observed at other time steps, for different initial

approximations for the conjugate gradient iteration, and for the odd-numbered iterates. One

phenomenon of interest that we observed in the experiments is that the convergence rate of

the linear solver appeared to be insensitive to the number of fluid layers. For convergence,

about the same number of iterations were needed over the tested range of three to nine layers.

Figure 7 shows the similarity between the three-layer and nine-layer cases. For the problem’s

particular matrix structure, for the test parameters considered, and for the preconditioner

used the convergence rate was found to be insensitive to block size.
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Figure 7. Linear solver convergence: (a) for 3 layers (6.11 × 105 unknowns), (b) for 9

layers (1.83× 106 unknowns)

6.2. Computational cost versus number of vertical layers

To study the dependence of the algorithm’s computational cost on the number of vertical

layers, we varied their number (for fixed total fluid depth) and compared the corresponding

CPU times consumed by the linear solver. Theoretically the total computational cost of

the solver should grow linearly with the average number of layers. This follows from the

properties: (i) that the number of unknowns grows linearly with the number of vertical layers;

(ii) that, as noted above, the number of iterations required for convergence is observed to

be insensitive to the number of layers (i.e., of matrix block size); and (iii) that, as discussed

in Section 4.3, the computational cost for each block grows linearly with its block size. Our

numerical experiments are in accord with the conclusion of linear growth. Figure 8 shows

the relationship between the average number of vertical layers and the CPU time consumed

by the linear solver.
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Figure 8. Effect of number of vertical layers: (a) on number of unknowns, (b) on CPU

time

6.3. Parallel performance

Our parallel implementation is built on multi-threading technology on a shared memory

machine. Each processor has its own computational thread for working on the tasks assigned

to it by the static-task-assignment scheme, and communication is done implicitly through

access to shared data. Synchronization is implemented with barriers and locks.

Figure 9 depicts the parallel performance of our software on the test problem of Figure

6a with nine vertical layers (the resulting number of unknowns is approximately 1.83 ×

106). Figure 9a gives the CPU time used by the linear solver with different numbers of

processors. The dotted curve is the theoretical time reduction T (n) = T (1)/n for ideal

parallel codes, where T is the CPU time and n is the number of processors. The solid curve

is our experimental result. Figure 9b shows the ideal speedup curve (dotted curve, S(n) = n)

and our experimental one (solid curve). One sees that the code scales well as the number of
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Figure 9. Parallel performance: (a) CPU time reduction, (b) speedup

processors is increased from one to ten.

7. CONCLUSIONS AND REMARKS

We have developed algorithms for solving the simulation equations for three-dimensional

isopycnal flows with small or large number of vertical layers. The global matrices have

special structure, and our linear solvers take advantage of the structure to obtain reduced

computational requirements and to achieve beneficial behavior for parallel computation. For

the case of a large number of vertical layers, specific object-oriented data structure designs

are described. These avoid the use of an explicit matrix framework and lead to a robust

parallel implementation. By working with the unreduced global system (8) instead of the

reduced one (9), we allow the computational costs to grow only linearly with the number of

vertical layers, rather than cubically. Favorable performances are observed for convergence

rate, computational cost growth rate, and parallel speedup.
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